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Abstract. We present methodology for obtaining forward solutions to Maxwell’s
equations in two dimensions, in the presence of a Debye medium. Perfectly Matched
Layer (PML) absorbing boundary conditions are used to absorb incoming energy at the
finite boundaries. A time-domain, PDE formulation is presented, and a finite difference
time-domain (FDTD) algorithm is used to obtain numerical solutions. A least squares
formulation of the inverse problem results from a careful consideration of the noise
model for data generation. The inverse problem is solved with varying levels of noise
in the data, and a frequency domain analysis is given that provides an explanation of
the results. The results and analysis motivate strategies for solving the inverse problem
that decrease computational cost. Finally, a result from the statistical theory of large
samples is used to obtain estimates of the variability in parameter estimates that is
due to the variability in the noisy data.
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Figure 1. Infinite strip antenna and dielectric slab.

1. Introduction

In [3] the authors developed techniques for solving Maxwell’s equations in one dimension

in a Debye medium, and for solving the associated parameter estimation or inverse

problem. The experimental setup assumed in the formulation of the one dimensional

problem includes an antenna that has infinite extension in both the x and y directions

(i.e., an infinite sheet). In this paper, we consider instead the case of an infinite strip

antenna which is infinite in the y direction, but is finite in the x direction. This setup

is illustrated schematically in Figure 1. The resulting Maxwell system involves oblique

incident waves on the dielectric slab and hence is two dimensional. The goal of this

paper is to extend results in [3] to this problem.

Regardless of the experimental setup, in practice absorbing boundary conditions

are necessary in order to model the (effectively) infinite spatial domain by a finite

computational domain. In the one dimensional case, perfectly absorbing boundary

conditions exist and are easily implemented [3]. Unfortunately, such boundary

conditions do not exist in higher dimensions. Though various analytic ”absorbing”

boundary conditions are available for use on the two dimensional problem, a more

effective technique employs perfectly matched layers (PMLs) as a fictitious absorbing

layer surrounding the region of interest (see Figure 2). If the PML is constructed

properly, there is no reflection at the PML interface and any energy returning to the

domain of interest after travelling through the PML is negligible. In Section 2, we

present a system of PDEs that models the setup illustrated in Figure 1 with a Debye

dielectric slab and PML absorbing boundaries. This system assumes that the electric
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Figure 2. Problem geometry

field generated by the antenna is polarized so that it only has a y component and is

solved using a finite difference time-domain (FDTD) algorithm [16]. Numerical results

from forward simulations are presented.

In Section 3 we discuss the solution of the associated parameter identification

problem. That is, given data generated from the experimental setup illustrated in

Figure 1 with a Debye dielectric slab, determine the parameters that characterize the

Debye medium. We begin the section with the noise model for data generation for such

experiments. Using this noise model, we are led to the negative log-likelihood function,

which takes a least squares form. The inverse problem is then to minimize this function.

We discuss the modified Levenburg-Marquardt method that we used to this end. Several

attempts are made at the inverse problem with varying levels of noise. The results are

explained and new approaches are motivated by a frequency domain analysis. This

analysis allows one to obtain a knowledge of which parameters are or are not likely to

be reconstructed accurately.
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Because our data is noisy, it can be viewed as a realization of a random variable

and is therefore variable. That is, in the context of the setup of Figure 1, if we perform

exactly the same experiment many times, we will obtain different data sets each time.

Consequently, if we solve the inverse problem with each of these different data sets, we

will obtain different values for the reconstructed parameters. Thus the variability in

the data translates into variability in the parameter estimates. In Section 4, we use

the statistical theory of large samples [9] to obtain estimates for the variability in our

estimates. Conclusions are presented in Section 5

2. The Forward Problem

We begin with Maxwell’s equations for a region with free charge density ρ = 0, which

are given by

∇ ·D = 0 (1)

∇ ·B = 0 (2)

∇× E = − ∂tB (3)

∇×H = ∂tD + J, (4)

where the vectors in (1)-(4) are functions of position r = (x, y, z) and time t, and

J = Jc + Js, where Jc is the conduction current density and Js is the source current

density. We assume only free space can have a source current, and thus either Jc = 0

or Js = 0, depending on whether or not the region is free space. For a Debye medium,

magnetic effects are neglected, and we assume that Ohm’s law governs the electric

conductivity. Hence, within the dielectric medium

B = µ0H, (5)

Jc = σE. (6)

The displacement vector D, on the other hand, has a more complex representation,

namely,

D = ε0ε∞E + P, (7)

where P is the electric polarization vector that satisfies the differential equation

τṖ + P = ε0(εs − ε∞)E (8)

inside of the dielectric and is 0 outside of the dielectric.

The computational domain for our problem is given in Figure 2. Notice first that

it is contained in the x,z plane. This is facilitated by the fact that we have assumed

uniformity along the y-axis. Secondly, note that the computational domain has finite

support. This is desirable since in order to numerically solve Maxwell’s equations, a

finite computational grid is necessary. For our problem, the resulting computational

boundaries will generally reflect electromagnetic waves, and hence, numerical solutions

will contain non-physical artifacts. One of the more effective ways to combat this

difficulty is to use Perfectly Matched Layers (PMLs). The PML is a fictitious medium
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that is placed on the outside of the region of interest (see Figure 2) in order to absorb

incoming energy without reflection.

In order to be more explicit about the geometry of the computational domain, we

introduce some notation. Let D denote the computational domain as pictured in Figure

2. We partition the interval X into disjoint closed intervals X−, X0, and X+ such that

max X− = min X0

max X0 = min X+,

and partition the interval Z into disjoint closed intervals Z−, Zv, and Zd such that

max Z− = min Zv

max Zv = min Zd.

The regions Zv and Zd are the vacuum and dielectric regions respectively. Let

Z0 = Zv ∪ Zd.

The region X0 × Z0 will be our domain of interest. The buffer region D \ (X0 × Z0)

outside our domain of interest contains the PMLs. Note that the PMLs surround the

computational region on only three sides. This suffices since it is assumed that the

dielectric is backed by a reflective material such as metal, where the boundary condition

E = 0 is used.

Our source term Js models a finite antenna in free space. It will have the form

Js(t, x, z) = I[−x̄,x̄](x) · δz̄(z) ·




fx(t)

fy(t)

fz(t)


 (9)

where I[a,b] is the indicator function on the interval [a, b], [−x̄, x̄] ∈ X0, z̄ is the z-

coordinate of the position of the antenna. The functions fm, for m = x, y, z, are

determined by the polarization and intensity profile of the interrogating electromagnetic

pulse.

We now express Maxwell’s equations in a form that is useful for our particular

problem. Combining the curl equations (3) and (4) with equations (5), (6), (7), and (8),

using the rescaling

Ẽ =

√
ε0

µ0

E, (10)

and writing the resulting equations in the frequency domain, we have

jω
̂̃
D = c0 · ∇ × Ĥ− Ĵs (11)

̂̃
D(ω) = ε∗r(ω) · ̂̃

E(ω) (12)

jωĤ = − c0 · ∇ × ̂̃
E, (13)

where “̂” denotes the Fourier transform in the time variable, and ε∗r(ω) is given by

ε∗r(ω) = ε∞ +
εs − ε∞
1 + jωτ

+
σ

jωε0

. (14)
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Note that the conductivity term Jc = σE is now contained within (12) rather than

within the forcing term in (11), as was the case in the original formulation (1)-(4).

In particular, it appears in the last term of (14). The polarization equation (8) is

also contained with (12). It is found in the second term of (14). We express Maxwell’s

equations in this way for three reasons. First, in this formulation, the parameters that we

hope to identify in the inverse problem are contained entirely within the single equation

(12) with (14). Secondly, given particular values for the parameters ε∞, εs, τ , and σ, for

a fixed frequency ω, equation (14) will reveal the sensitivity of the displacement vector
̂̃
D to changes in these parameters. This information will be particularly useful when

we attempt the parameter identification problem. Third, this formulation results in a

simplified analysis, PML formulation, and PML implementation.

2.1. Reduction to Two Dimensions and to the TM Mode

Since the problem geometry does not depend on y, Maxwell’s equations can be simplified.

In addition, we make the assumption that our pulse is polarized so that it only has a y

component. We define fy in (9) by

fy(t) = I[0,tf ](t)sin(ω̂t), (15)

where ω̂tf is an integral multiple of 2π, and hence,

Js(t, x, z) =




0

I[−x̄,x̄](x) · δz̄(z) · I[0,tf ](t) · sin(ω̂t)

0


 . (16)

The curl equations (11),(13) then have the equivalent time-domain formulation



∂tHx(x, z)

∂tHy(x, z)

∂tHz(x, z)


 = c0




∂zẼy(x, z)

∂xẼz(x, z)− ∂zẼx(x, z)

−∂xẼy(x, z)


 , (17)




∂tD̃x(x, z)

∂tD̃y(x, z)

∂tD̃z(x, z)


 = c0




−∂zHy(x, z)

∂zHx(x, z)− ∂xHz(x, z)

∂xHy(x, z)


− Js(t, x, z), (18)

where Js is given by (16).

Assuming zero initial conditions for E and H, the vector system (17)-(18) reduces

to the set of three equations

∂D̃y

∂t
= c0

(
∂Hz

∂x
− ∂Hx

∂z

)
− Js,y(t, x, z̄), (19)

∂Hx

∂t
= c0

∂Ẽy

∂z
, (20)

∂Hz

∂t
= − c0

∂Ẽy

∂x
, (21)

which is known as the TM mode.
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We choose to work with the TM mode since (11)-(13) then reduces to four equations.

If we chose instead to polarize our electromagnetic pulse so that Js,y = 0, while

Js,x, Js,z 6= 0, the TE mode would result, and (11)-(12) would reduce instead to five

equations. In the TM case, (12) is needed only for updating Ey, whereas in the TE case

it is used to update both Ex and Ez.

2.2. Perfectly Matched Layers

To simplify notation in the sequel, we suppress the ”˜” notation found in (19)-(21).

In order to give physical motivation for the use and effectiveness of the PML we first

consider (19). We note that Js,y = 0 inside of the PML regions. To model a lossy

medium for z ∈ Z− (see Figure 2), we add a loss term:

∂Dy

∂t
= c0

(
∂Hz

∂x
− ∂Hx

∂z

)
− σ̂(z)

ε0

Dy, (22)

where σ̂(z) = 0 for z ∈ Z0. Inside of the PML, i.e. for z ∈ Z−, σ̂(z) is a smooth function

of z that increases from a value of zero at the free-space/PML interface to a value of

σmax at the boundary. In the frequency domain, equation (22) can be written as

jω ·
(

1 +
σ̂(z)

jωε0

)
D̂y = c0

(
∂Ĥz

∂x
− ∂Ĥx

∂z

)
. (23)

Making similar choices for (20) and (21), we obtain

jω ·
(

1 +
σ̂(z)

jωε0

)
D̂y = c0

(
∂Ĥz

∂x
− ∂Ĥx

∂z

)
, (24)

jω ·
(

1 +
σ̂(z)

jωε0

)−1

Ĥx = c0
∂Êy

∂z
, (25)

jω ·
(

1 +
σ̂(z)

jωε0

)
Ĥz = − c0

∂Êy

∂x
, (26)

where the “̂” over Ey, Dy, Hx, and Hz denotes the Fourier transform in time variable.

For z ∈ Z−, the PML is modelled in the frequency domain by (24)-(26). These

very specific choices for the fictitious complex permittivity ε̂y(z) = 1 + σ̂(z)/jωε0 and

permeabilities µ̂x(z) = (1+ σ̂(z)/jωε0)
−1, µ̂z(z) = 1+ σ̂(z)/jωε0 result in zero reflection

(in the continuum space) of electromagnetic energy at the free-space/PML interface

[15]. To see this, we note that if a wave is propagating in a medium A and impinges

upon a medium B, the amount of reflection is determined by the respective impedances

and is given by

Γ =
ηA − ηB

ηA + ηB

. (27)

The impedance η̂ of a medium with complex permittivity ε̂ and complex permeability

µ̂ is given by

η̂ =

√
µ̂

ε̂
.
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For our formulation, ε̂, µ̂, and η̂ are diagonal tensors of the form

ε̂ = diag(ε̂x, ε̂y, ε̂z),

µ̂ = diag(µ̂x, µ̂y, µ̂z),

η̂ = diag(η̂x, η̂y, η̂z).

The dielectric constants ε̂y, µ̂x, and µ̂z are chosen so that they satisfy two sets of

conditions, one of which is that the resulting diagonal tensor Γ defined by (27) is the

zero tensor. For details, see [14, 15].

In discretized space, a perfectly matched interface does not exist [6], and hence,

reflections do occur in computations. Fortunately, they can be made to be negligible.

In our implementation, this is done by choosing the depth of the PMLs carefully.

We also need to model the PMLs found in regions where x ∈ X− ∪ X+. Using

arguments equivalent to those needed to derive (24)-(26), the following system of

equations is obtained:

jω

(
1 +

σ̂(x)

jωε0

) (
1 +

σ̂(z)

jωε0

)
D̂y = c0

(
∂Ĥz

∂x
− ∂Ĥx

∂z

)
(28)

jω

(
1 +

σ̂(x)

jωε0

)−1 (
1 +

σ̂(z)

jωε0

)
Ĥx = c0

∂Êy

∂z
(29)

jω

(
1 +

σ̂(x)

jωε0

) (
1 +

σ̂(z)

jωε0

)−1

Ĥz = − c0
∂Êy

∂x
. (30)

This system together with (12) gives us the full system of equations that we wish to

solve. (For a thorough overview of PML technology for electromagnetics problems see

[16] and [8].)

We now must write (28)-(30) in the time domain.

2.3. The Full Formulation in the Time Domain

It is a straightforward exercise to show that (28)-(30) can be expressed in the time

domain as

∂tD
∗
y +

σ̂(x)

ε0

D∗
y = c0 (∂xHz − ∂zHx) , (31)

∂tDy +
σ̂(z)

ε0

Dy = ∂tD
∗
y, (32)

∂tH
∗
x +

σ̂(z)

ε0

H∗
x = c0∂zEy, (33)

∂tHx = ∂tH
∗
x +

σ̂(x)

ε0

H∗
x, (34)

∂tH
∗
z +

σ̂(x)

ε0

H∗
z = − c0∂xEy, (35)

∂tHz = ∂tH
∗
z +

σ̂(z)

ε0

H∗
z , (36)
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where D∗
y, H∗

x, and H∗
z are defined by equations (32), (34), and (36) respectively. Note

that outside of the PML regions, σ̂(x) = σ̂(z) = 0 and (31)-(36) reduces to (19)-(21).

(Recall that we have suppressed the “˜” notation.)

The y component of the time domain expression of (12) is given by

Dy(t) = ε∞Ey(t) + Py(t) + Cy(t), (37)

where the polarization Py satisfies

τ Ṗy + Py = (εs − ε∞)Ey, (38)

and the conductivity term Cy satisfies

Ċy = (σ/ε0)Ey (39)

inside of the dielectric. Outside of the dielectric, Cy = Py = 0. Recall that we rescaled

Ey via equation (10) and then suppressed the corresponding notation change. This

accounts for the change in form from (8) to (38). Also, note that Dy in (37) is not the y

component of the displacement vector D of equation (7). It is, rather, the y component

of
̂̃
D in (12) written in the time domain. The “˜” was suppressed at the beginning of

Section 2.2 in order to simplify notation.

Equations (31)-(38) are the full set of equations that we solve numerically. We

use finite differences. In particular, we use the FDTD algorithm of [15, 16], which uses

forward differences to approximate the time and spacial derivatives. The Yee staggered

grid is used [15, 16], which ensures second order accuracy within the free space region.

Unfortunately, this accuracy is not maintained within or at the boundary of the dielectric

medium. The FDTD algorithm is fully explicit, and does not require the inversion of

large, sparse matrices. Our implementation of the FDTD algorithm for this problem,

including the implementation of the PMLs, follows details found in [15] closely, with the

exception that the corner regions in which there is overlap of PML layers are dealt with

as in [7]. Gauss’ divergence laws (1) and (2) are automatically enforced by the FDTD

algorithm (see [16]). Well-posedness for this system is an important question, which we

hope to address in a future paper.

In all simulations, the spatial and time steps are related via

∆t =
∆x

2c0

, (40)

where c0(= 3 × 108) is the (approximate) speed of light. This satisfies the CFL

condition, and hence, guarantees the stability of the FDTD algorithm in free space

[16]. Fortunately, stability is retained when a Debye medium is introduced [12].

An unfortunate side effect of numerical solutions to Maxwell’s equations is that

dispersion is introduced by the numerical scheme. This is the case for both finite

difference and finite element (FEM) methods (see [8, 16]). Techniques can be used to

minimize dispersion but such techniques are very difficult to implement when dispersive

materials are present [12]. For the Debye medium in particular, it is noted in [12] that

when the FDTD algorithm is used spurious dispersion may occur unless ∆t ∼ O(10−3τ),

which can be a highly restrictive condition.
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A different, but standard, approach used in solving Maxwell’s equations in the

time domain is to first construct the wave equation for the electric field E, and then

solve it numerically. In [2] this is done for the forward problem addressed in this paper

using FEM. The main drawback of the FEM approach is that at each time step a large

sparse linear system must be solved. This is not the case for the FDTD algorithm.

Consequently, for the same grid spacing, FDTD is much faster. In addition, the

implementation of the FDTD algorithm is much simpler for this problem than it is for

FEM. This is particularly true for the implementation of the PMLs. In the numerical

comparisons that we have done between these two approaches, the FDTD algorithm

was at least ten times faster when the same computational grid was used. On the other

hand, we have not carried out a convergence comparison between FDTD and FEM for

the forward problem. It is likely that the forward solutions obtained using FEM will

converge on a coarser grid than does FDTD, since FDTD loses its second order accuracy

within the dielectric and at the dielectric/free space interface. If this is the case, savings

in computational time may be lost. Hence, it is not clear at this point which approach

(FEM or FDTD) is better for use in solving the inverse problem. These questions are

currently being addressed in further efforts.

2.4. The Forward Problem for a Debye Medium

In this section we present details and results from an attempt at solving (31)-(38) using

the FDTD approach discussed in the previous section. We begin with the geometry

of the computational region. The necessary measurements are given by X0 = [0, 0.1],

Zv = [0, 0.2], Zd = [0.2, 0.4] (these measurements are in meters). In order to achieve

convergence of the finite difference approximations we take the number of nodes along

the z-axis to be N = 640. The spatial step size in both the x and z directions is given

by

∆x = 0.4/N. (41)

Then, from (40) we obtain ∆t ≈ 1.0417× 10−12 seconds.

The parameters that give the position of the source term Js defined in (9) are

x̄ = 0.025 and z̄ = 0.1. For our simulations, the frequency of our sine wave is 3 GHz,

and hence ω̂ = 2π ∗ 3× 109. The duration tf of the sine pulse is 0.667 nanoseconds (ns),

which is two complete periods.

The depth of the PML layers is 0.05 meters. This measurement balances

computational efficiency with the minimization of numerical noise caused by the

reflections from the PML interfaces. The spatial discretization within the PML is the

same as that within the computational region.

In order to attempt the parameter identification problem, we must collect data

within the computational domain at a pre-specified sampling rate. We collect data

at the center of the antenna at each time step. Then, our data consists of the set

{Ey(i∆t, 0, z̄,q)}Nt
i=1, where Ey is the solution of Maxwell’s equations given by the FDTD

algorithm, q = (σ, τ, εs, ε∞) is the set of parameters that characterize the Debye medium,
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Figure 3. Data for the Debye model for water. The vertical axis gives the magnitude
of the electric field. The horizontal axis gives the time in the units ∆t seconds.

and Nt is the total number of time steps. Notice that we have now made explicit the

dependence of solutions of (31)-(38) on the parameter set q. We will continue to use this

convention in the sequel. For the discretization mentioned above, we take Nt = 1800, in

which case the data includes both the outgoing energy and the energy that is reflected

from the free-space/dielectric interface.

In [5] it is noted that the polarization behavior of water is reasonably modelled by

(37), (39), and (38) with parameter values:

σ = 1× 10−5 mhos/meter,

τ = 8.1× 10−12 seconds, (42)

εs = 80.1 relative static permittivity,

ε∞ = 5.5 relative high frequency permittivity.

With this information, numerical approximations to (31)-(38) can be obtained. The

resulting data set {Ey(i∆t, 0, z̄,q)}Nt
i=1 is plotted in Figure 3. In Figure 4, we see the

formation of the Brillouin precursors [1, 2, 3] within the dielectric. This suggests that

the FDTD solutions are accurately capturing the dispersivity of the Debye medium.
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Figure 4. Precursor Formation Within the Debye Medium. We plot {Ey(t̄, 0, z)}, for
z ∈ [0.2, 0.4] at four different times. In the upper left, t̄ = 1500∆t. In the upper right,
t̄ = 2500∆t. In the lower left, t̄ = 3500. In the lower right, t̄ = 4500. These times
correspond to 1.56, 2.60, 3.65, and 4.69 ns respectively.

3. The Inverse Problem

We now address the problem of parameter identification for a Debye medium. In the

previous section, the problem of solving Maxwell’s equations with a Debye polarization

model was addressed. Implicit in this problem is the knowledge of the “true” parameter

vector q∗, given by (42). In the inverse problem, on the other hand, we have

measurements of the electric field at the point (0, z̄) in the computational domain at

uniform intervals of time ti. Given this data, our goal is to then identify the “true”

parameter vector q∗.

3.1. The Noise Model for Data Generation

In the laboratory setting, noise enters into the problem both through the resistor, which

generates the electric pulse, and through the antenna/receiver, which records the electric

field intensities at the point (0, z̄) at discrete time steps. The noise model presented in

this section follows [13] closely.

First, noise enters the signal via the random motion of electrons in the resistor.



Parameter Identification for a Dispersive Dielectric 13

These random motions produce small, random voltage fluctuations at the resistor

terminals. Over time these voltage fluctuations have a zero average value, but non

zero rms (or standard deviation) given, at time ti, by Planck’s black body radiation

law,

vi =

√
4hfBR

ehf/KT − 1
, (43)

where

h = 6.546× 10−34 J-sec is Planck’s constant,

k = 1.380× 10−23 J/oK is Boltzmann’s constant,

T is the temperature is degrees kelvin (K),

B is the bandwidth of the system in Hz,

f is the center frequency of the bandwidth in Hz,

R is the resistance.

For microwave frequencies we have hf << kT , and hence,

ehf/KT − 1 ≈ hf

KT
.

Thus equation (43) is well approximated by

vi =
√

4kTBR. (44)

This is the approximation commonly used in microwave work [13]. The noise is modelled

as independent and identically distributed (i.i.d.) Gaussian with constant variance v2
i .

If we replace the noisy resistor with a noiseless resistor together with a voltage

generator [13], then we have

vi =
√

kTB. (45)

Noise also enters the data through the antenna and receiver. The noise comes from

two sources: the noise due to the antenna, and the electronic noise in the receiver. Both

noises are assumed to be white Gaussian with standard deviation vi =
√

kTB [10, 13].

With this model, the noise in the data is zero mean, additive Gaussian, with

constant variance across time. That is, our data vector

Edata
y = (Edata

y,1 , . . . , Edata
y,Nt

) (46)

is a random vector with normally distributed components

Edata
y,i ∼ N (Ey(ti, 0, z̄,q

∗), Σ2) for i = 1, . . . , Nt, (47)

where Σ2 is calculated using the above approximations for the variances of the noise

that comes from the resistor, the antenna, and the receiver.

To generate synthetic, noisy data, we use the FDTD method, with the specifics of

Section 2.4, to obtain the set {Ey(ti, 0, z̄,q
∗)}Nt

i=1, together with noise model (47). We

then seek the maximum likelihood estimator (MLE) of the true parameter vector q∗
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given by (42). Given the noise model (47), with data equal to n realizations {dj}n
j=1 of

(46),(47), the MLE q̂n for q∗ is given by

q̂n = arg min
q∈Q

J(q), where J(q) =
1

2

n∑

j=1

||Ey(0, z̄,q)− dj||22, (48)

where Ey(0, z̄,q) = (Ey(t1, 0, z̄,q), . . . , Ey(tNt , 0, z̄,q)), and Q is the constraint set for

the parameter values.

3.2. The Optimization Problem

The minimization problem (48) is solved using a modified Levenberg-Marquardt method

[11]. In the particular implementation that we employ, an ellipsoidal trust region

approach is taken, which alleviates difficulties caused by large differences in the

magnitudes of the parameters in the vector q. In particular, each variable is scaled

to be of roughly the same magnitude, namely each scaled variable is approximately

O(1) near q∗. Prior knowledge of the magnitudes of the parameters at the solution can

be used to determine the scaling factors. The trust-region subproblem is solved at each

outer iteration using the dogleg method (see [11]). In addition, we enforce the physical

constraints σ ≥ 0, τ ≥ 0, εs ≥ 1, and ε∞ ≥ 1, which determine Q. This is done via

the projection of both the trust region and of the search directions onto the feasible

set at each iteration. The convergence properties of the unconstrained version of the

algorithm are then retained. The details of this algorithm will be presented in a future

paper.

The Jacobian matrix, which is used both for the computation of the gradient and for

the construction of the Gauss-Newton approximation to the Hessian, is approximated

using forward differences. Each iteration then involves at most five function evaluations:

one at the current iterate, and one for each of the four parameters. This is not overly

restrictive for our problem, but for problems in which the permittivity and conductivity

are allowed to be spatially varying, this is no longer a viable approach. Analytic

computations of the gradient are possible, would alleviate this difficulty, and require

no finite difference approximations. We hope to explore the use of analytic gradients

for this problem in future work.

It is important to note that a solution to (48) depends upon the spatial

discretization ∆x given by (41) (note that ∆t is then obtained using (40)), which depends

only on the number of grid points N in Zv∪Zd of Figure 2. (We assume that the length

of 0.4 for Zv∪Zd is fixed.) Thus in (48), J and any approximate solution q of (48) should

carry the index N . Nonetheless, in the sequel we will suppress this N dependence.

3.3. The Inverse Problem for a Debye Medium

We now present results for the inverse problem of identifying the dielectric parameters

in the Debye model for water given noisy data. Using the parameters given in (42)

and the discretization details given in Section 2.4, we generate data with varying levels
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Table 1. Estimated parameters in Debye inverse problem. Test 1

Test % Noise σ τ εs ε∞ Residual

True values: 1.0× 10−5 8.1× 10−12 80.1 5.5

1 0.0 0.0 9.965× 10−12 80.75 14.77 6.7051× 10−8

2 0.5 0.0 9.974× 10−12 80.20 13.30 1.2279× 10−5

3 1.0 0.0 9.980× 10−12 80.18 12.23 4.8912× 10−5

4 1.5 1.952× 10−1 7.437× 10−12 79.07 10.00 1.1483× 10−4

5 2.0 0.0 9.989× 10−12 80.01 10.66 1.9542× 10−4

6 2.5 3.671× 10−2 9.997× 10−12 79.57 9.717 3.1861× 10−4

7 3.0 8.715× 10−2 9.998× 10−12 79.82 9.189 4.5844× 10−4

8 5.0 0.0 9.903× 10−12 85.42 16.22 1.2000× 10−3

of noise using the error model (47) with ti = i∆t. Hence, our sampling rate for the

antenna/receiver is assumed to be ∆t ≈ 0.001 ns. Admittedly, such a sampling rate

may not be possible in many laboratory settings. Several numerical experiments were

performed in which data was generated using error model (47) with ti = i · ` ·∆t, where

` is an integer larger than 1. As one would expect, our ability to identify the true

parameter vector q∗ in the inverse problem decreased as ` increased. Once real data

is obtained, with a particular sampling rate, it will likely be necessary to decrease the

sampling rate when solving the inverse problem.

We make eight different attempts at the inverse problem with a different noise level

for each attempt. We solve (48) using the approach discussed in the previous section

with initial guess q0 = (σ0, τ0, εs,0, ε∞,0) given by σ0 = 1.5 × 10−5, τ0 = 10.0 × 10−12,

εs,0 = 73.1, and ε∞,0 = 6.0. (These range between 50% relative to 10% relative error

from the true values and are typical of values used in testing algorithms [4].). We

use only one data vector d1. Then n = 1 in (48). The results are given in Table 1.

The residual, which is given in the far right column, is J(q̂)/||d1||2, where q̂ is the

approximate solution to (48) given by the optimization algorithm.

A partial explanation for results in Table 1 can be obtained from an analysis of

equation (14), which we rewrite as

ε∗r(ω) =
εs

1 + jωτ
+

jωτ

1 + jωτ
ε∞ +

σ

jωε0

. (49)

Since, in our simulations, the outgoing radiation is given by two cycles of a sine

wave, in the continuum space, the resulting pulse will have infinite frequency content.

Nonetheless, for the purpose of the inverse problem, the outgoing and reflected radiation

will be dominated by frequencies near the carrier frequency, 3 GHz. This is seen in Figure

5. Thus ε∗r will be dominated by frequencies near 3 GHz, and so we restrict our analysis

of (49) to the case where ω ≈ 3× 109. Then, since ωτ ∗ ∼ O(10−2),

ε∗s
1 + jωτ ∗

∼ O(ε∗s), (50)
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Figure 5. Fourier Transform of the Data in Figure 3. The vertical axis gives
amplitude. The horizontal axis gives the frequency from 0.3 GHz to 30 GHz.

jωτ ∗

1 + jωτ ∗
ε∗∞ ∼ O(10−2ε∗∞). (51)

Furthermore, given that ε0 ≈ 8× 10−12, we have

σ∗

jωε0

∼ O(102σ∗). (52)

Equations (50), (51), and (52) suggest that ε∗r will be most sensitive to the static

permittivity εs. More specifically, near q∗, ε∗r will is more sensitive to changes in εs than

to changes in τ , ε∞, and σ of the same relative magnitude. Further support for this

claim can be found by an appeal to the reflection coefficient Γ, which is defined by

Γ =
1−√ε∗r
1 +

√
ε∗r

.

Γ will also be dominated by εs. We therefore expect that the cost function J will be

most sensitive to εs, and hence, that εs will be the easiest parameter to reconstruct.

This is supported by the results in Table 1.

Furthermore, equations (50) and (51) suggest that near τ ∗, ε∗r is relatively insensitive

to “small” changes in τ , since if τ ≈ τ ∗, the approximation 1 + jωτ ≈ 1 remains valid.

On the other hand, if τ becomes too large, it’s effects will be manifested in both the first
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and second terms of (49). In fact, we found that if τ is fixed and is large in comparison

to τ ∗, the reconstructed values of εs are very poor. These observations explain why in

Table 1 the reconstructed values of τ are near in magnitude to τ ∗ at all noise levels.

Since ε∗r is dominated by εs, we would not expect the accurate reconstruction of ε∗∞.

Furthermore, assuming

O(τ) = O(τ ∗), (53)

τε∞ ≈ τ ∗ε∗∞, (54)

from equation (51), we have

jωτ

1 + jωτ
ε∞ ≈ jωτ ∗

1 + jωτ ∗
ε∗∞. (55)

Hence, independent identification of τ ∗ and ε∗∞ will be very difficult, particularly in the

presence of noise. The identification of their product, on the other hand, will be less

difficult, though we would not expect to reconstruct τ ∗ε∗∞ as accurately as we do ε∗s.
This is also supported by the results of Table 1.

The observations of the previous two paragraphs suggest a strategy for the inverse

problem. Namely, fix the value of ε∞ to an approximate of ε∗∞ of the same order and

optimize over the other parameters. The optimized value of τ will then likely satisfy

(53), (54), and (55), in which case the dynamics of the problem will be adequately

captured. Before testing this approach, we discuss the parameter σ.

Equation (52) suggests that J is least sensitive to the parameter σ. In addition,

since the change in σ from its value in free space to its value in the dielectric is very

small, we would expect very little of the reflected energy to be due to the change in σ.

The results of Table 1 are therefore no surprise. Also not surprising is the fact that the

magnitude of σ remains small in all reconstructions. This suggests the strategy of fixing

the value of σ to a value reasonably close to σ∗ prior to optimization. The dynamics of

the problem should then be adequately captured.

We now test the strategies suggested in the previous two paragraphs. Namely, we

perform the inverse problem with the values of σ and ε∞ fixed at σ = 0.0 and ε∞ = 1.0.

The results of this approach are presented in Table 2. The values of εs,0 and τ0 are the

same as in the previous attempt. Comparing these results with those of Table 1, we

see that this strategy yields very little change in the values of the residuals, while the

reconstruction of εs remains accurate. In addition, the solution to the inverse problem

can be had far more quickly when σ and ε∞ are fixed at the outset. Though more

iterations are needed in this case, gradient computations are obtained with 3/5ths the

cost. Also, once σ and ε∞ are fixed, constraints are no longer necessary.

The relative stability of the τ reconstruction in Table 2 suggests yet another

strategy. Namely, fix the value of τ at the outset. Results for this approach are given

in Table 3 where τ was fixed to be the initial guess τ0 from the previous attempts.

Surprisingly, we find the this strategy actually yields slightly smaller values for the

residuals than were obtained in Table 2. In addition, the optimization problems

converged far more quickly. In fact, at all noise levels, within three iterations our
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Table 2. Estimated parameters in Debye inverse problem. Test 2.

Test % Noise σ τ εs ε∞ Residual

True values: 1.0× 10−5 8.1× 10−12 80.1 5.5

1 0.0 0.0 9.818× 10−12 80.82 1.0 5.8619× 10−7

2 0.5 0.0 9.767× 10−12 80.42 1.0 1.3168× 10−5

3 1.0 0.0 9.781× 10−12 80.94 1.0 5.2418× 10−5

4 1.5 0.0 9.751× 10−12 82.09 1.0 1.1127× 10−4

5 2.0 0.0 9.922× 10−12 82.69 1.0 1.9741× 10−4

6 2.5 0.0 9.123× 10−12 79.82 1.0 3.1841× 10−4

7 3.0 0.0 9.598× 10−12 79.44 1.0 4.5081× 10−4

8 5.0 0.0 9.703× 10−12 79.51 1.0 1.2000× 10−3

Table 3. Estimated parameters in Debye inverse problem. Test 3.

Test % Noise σ τ εs ε∞ Residual

True values: 1.0× 10−5 8.1× 10−12 80.1 5.5

1 0.0 0.0 1.000× 10−11 80.75 1.0 6.8509× 10−7

2 0.5 0.0 1.000× 10−11 81.24 1.0 1.2546× 10−5

3 1.0 0.0 1.000× 10−11 80.03 1.0 5.0736× 10−5

4 1.5 0.0 1.000× 10−11 80.26 1.0 1.1028× 10−4

5 2.0 0.0 1.000× 10−11 82.46 1.0 1.9746× 10−4

6 2.5 0.0 1.000× 10−11 80.11 1.0 3.1851× 10−4

7 3.0 0.0 1.000× 10−11 81.74 1.0 4.4774× 10−4

8 5.0 0.0 1.000× 10−11 78.72 1.0 1.2000× 10−3

optimization algorithm had converged. Using the previous strategies, many more

iterations were required.

The previous approach rested heavily on the fact that our choice of τ0 was near in

magnitude to τ ∗. An obvious question, then, is what can be done if one cannot obtain

a good initial guess for τ ∗? We take the approach of fixing the parameters σ = 0,

εs = 73.1, and ε∞ = 1 and optimizing, with no noise, with respect to the parameter τ .

With an initial guess of τ0 = 10−4, we obtain the approximation τ = 6.9987×10−12. We

observe how close this is to τ ∗. We then fix this value of τ and optimize over εs. The

results of this approach are given in Table 4 and are similar to those found in Table 3.

3.4. Reconstructions with Inferior Accuracy

In each of the above experiments, the data was generated on the same grid that was

used in the inverse problem, and i.i.d. Gaussian noise was added. In this section, we

attempt the inverse problem with data generated instead on a finer grid. No additional



Parameter Identification for a Dispersive Dielectric 19

Table 4. Estimated parameters in Debye inverse problem. Test 4.

Test % Noise σ τ εs ε∞ Residual

True values: 1.0× 10−5 8.1× 10−12 80.1 5.5

1 0.0 0.0 6.9987× 10−12 79.82 1.0 5.7768× 10−8

2 0.5 0.0 6.9987× 10−12 79.67 1.0 1.2299× 10−5

3 1.0 0.0 6.9987× 10−12 80.18 1.0 5.4274× 10−5

4 1.5 0.0 6.9987× 10−12 80.02 1.0 1.1609× 10−4

5 2.0 0.0 6.9987× 10−12 78.54 1.0 2.0476× 10−4

6 2.5 0.0 6.9987× 10−12 78.64 1.0 3.1835× 10−4

7 3.0 0.0 6.9987× 10−12 82.33 1.0 4.4185× 10−4

8 5.0 0.0 6.9987× 10−12 78.67 1.0 1.3000× 10−3

Table 5. Estimated parameters in Debye inverse problem. Test 5.

Test σ τ εs ε∞ Residual

True values: 1.0× 10−5 8.1× 10−12 80.1 5.5

1 0.0 6.9987× 10−12 72.22 1.0 3.8477× 10−5

2 1.0× 10−5 8.1000× 10−12 72.55 5.5 3.6494× 10−5

noise is added. More specifically, we generate our data on the grid with N = 1280 in

(41) and attempt the inverse problem on the grid with N = 640. In our first experiment,

we attempt the inverse problem with σ, τ , and ε∞ fixed to the values found in Table

4. These results are given by Test 1 in Table 5. The reconstructed value of εs is

disappointingly far from ε∗s. In order to see if the choice of fixed parameters is the

culprit, we solve the inverse problem with the σ, τ , and ε∞ fixed at the true values σ∗,
τ ∗, and ε∗∞ respectively. There is very little difference in the result, which is given by

Test 2 in Table 5.

One possible explanation for these results is that the FDTD algorithm has not quite

converged for N = 640, even though plots of {Ey(ti, 0, z̄)}, such as is found for N = 640

in Figure 3, seem to suggest that convergence has occurred. Unfortunately, solving the

inverse problem on the grid defined by N = 1280 in (41) is computationally challenging.

If the FDTD algorithm has not converged for N = 640, then one is led to question

the results and the conclusions of Section 3.3. Fortunately, numerical experiments

suggest that they will remain unchanged for N = 1280. Also, for N = 320 and N =

160, the same experiments were performed with very similar results and conclusions.

Moreover, the results and conclusions of Section 3.3 are very similar to those found in

[3] for the analogous one dimensional problem using FEM. Hence, we conclude that

they are valid. However, the above comments do provide a caution that the values of

parameter estimates may depend significantly on resolution of the underlying dynamical
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systems.

One should also question the strategy of using FDTD when solving the inverse

problem. The FDTD algorithm, though second order accurate in free space, looses

that accuracy within the PMLs and, more importantly, within the dielectric [12].

Furthermore, FDTD is highly vulnerable to error at the free space/dielectric interface.

Thus, though FDTD is unmatched in simplicity of implementation for this problem, it

may not be the proper forward solver to use if the goal is the solution of the inverse

problem. Clearly, further investigation is necessary before this question and similar ones

are resolved.

4. Estimating Variability in Reconstructions

In the previous section, we obtain reconstructions of the true parameter vector q∗ by

approximately solving (48) when n = 1. In each of the above approaches, the cost

function J in depends upon a data vector d1, which is a realization of the random vector

(46),(47). If the experiment that was performed to obtain d1 is performed a second

time, a different data vector d2 is obtained, which is also a realization of (46),(47). If

the computations in the previous section are repeated using d2 in place of d1, the cost

function J will be different, and hence, different values for the reconstructed parameter

vector q̂ will be obtained. This illustrates the fact that the reconstruction q̂(d) is in fact

random as well. A natural question therefore arises. Namely, what sort of variability

is in our reconstruction? Or, put in another way, what kind of confidence can we have

that our reconstruction q̂ is close to the true parameter vector q∗?
To address this question, we will make use of large-sample theory from statistics

(see Chapter 7 in [9]). In addition, we will restrict our attention to the case of Table 4,

where the parameters σ, τ , and ε∞ are fixed. Then the cost function J in (48) depends

only on εs. We now state the theorem from [9], p. 469, that we will use.

Theorem 3.1: Let D1, . . . ,Dn be independent and identically distributed random

vectors that depend on a parameter εs and have probability density function fεs.

If fεs satisfies certain regularity conditions, then any consistent sequence ε̂sn =

ε̂sn(D1, . . . ,Dn) of roots of the likelihood equation satisfies
√

n(ε̂sn − ε∗s) → N (0, 1/I(ε∗s)), (56)

where ε∗s is the “true” parameter value, and it is assumed that

I(ε∗s) = Eεs

[
− ∂2

∂ε2
s

log fε∗s

]
(57)

satisfies 0 < I(ε∗s) < ∞.

The random vectors D1, . . . ,Dn in Theorem 3.1 are given by

Di = Edata
y i = 1, . . . , n,
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where Edata is defined by (46), (47), and are therefore independent and identically

distributed.

The density function fεs is related to the cost function J in (48) via

J(εs) = −Σ2 · log fεs + c, (58)

where c is a constant. Hence,

I(ε∗s) = Eεs

[
1

Σ2
· ∂2

∂ε2
s

J(ε∗s)

]
. (59)

In order to use Theorem 3.1, we must assume that the cost function J has a bounded

third derivative. This amounts to the assumption that the mapping from εs to

Ey(t, 0, z̄, εs) has a bounded third derivative, which will be true almost everywhere.

The remaining regularity conditions required for fεs by Theorem 3.1 are easily satisfied.

Numerical experiments suggest that J(εs) is strictly convex, in which case the only

local minimum of J is the global minimum. Then, if our algorithm creates a sequence for

which the derivative of J converges to zero, this sequence must converge to the maximum

likelihood estimator. Given that this occurs for each n, the sequence {ε̂s,n}∞n=1 will be

consistent.

From (56) we know that

ε̂s,n → ε∗s.

We define

αn =
1

σ2n
J ′′(ε̂s,n). (60)

It is shown in [9] that

αn − I(ε̂s,n) → 0,

and hence

αn → I(ε∗s). (61)

We will therefore use αn to approximate I(ε∗s) in (57).

In Table 6 we solve problem (48) for various values of n at the 2% noise level. We

note that as n increases, the values for ε̂s,n and αn converge, then appear to begin to

diverge at n = 64. The divergence is likely due to the fact that for large values of n the

finite difference approximations to the gradient and Hessian become inaccurate for the

function J in (48).

The rapid convergence of {αn} suggests that the approximations of I(ε∗s) are

reasonably accurate for small values of n, and hence, that the values obtained for the

approximate standard deviation, which are found in the last column of Table 6, should

be reasonably accurate as well. This is supported by the results found in Table 6, where

we see that for each n, with the exception of n = 1 and n = 64, ε̂s,n is within one

standard deviation of the true value ε∗s. For n = 1 and n = 64, the reconstruction is

within two standard deviations of ε∗s, which is also reasonable. We note also that, as

predicted by Theorem 3.1, ε̂s,n converges, more or less, to the true value ε∗s = 80.1.
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Table 6. Estimates for the Variability in ε̂s for the Example with 2% Noise. The
values of σ, τ , and ε∞ are fixed at the values found in Figure 4. We use αn to estimate
I(ε∗s), 1/nαn to estimate the variance, and 1/

√
nαn to estimate the standard deviation.

n ε̂s,n αn 1/nαn 1/
√

nαn

1 82.07 0.3906 2.5604 1.6001

2 80.36 0.4146 1.2060 1.0982

4 79.84 0.4211 0.5937 0.7705

8 80.38 0.4138 0.3021 0.5496

16 80.11 0.4177 0.1496 0.3868

32 80.01 0.4194 0.0745 0.2729

64 79.73 0.4233 0.0369 0.1921

Finally, we note that for n = 1, the approximation to I(ε∗s) is near to the

converged value. Also, the value of ε̂s,1 is reasonably close to the true value ε∗s.
Hence, the corresponding approximate to the standard deviation may give a reasonable

approximation of the true variability in the reconstruction ε̂s,1. In the next experiment

we test this hypothesis.

In Table 7 we address the following question: If we have collected data only once, i.e.

n = 1 in Theorem 3.1, which is often the case in applications, can the asymptotic result

of Theorem 3.1 provide a reasonable estimate for the variability in the corresponding

reconstruction ε̂s,1 of ε∗s? We perform the experiment for eight noise levels, and compute

the corresponding maximum likelihood estimate ε̂s,1. We approximate the standard

deviation of ε̂s,1 as in Table 6.

First, we note that as the noise level rises, so does the variability in the

corresponding reconstruction ε̂s,1. Furthermore, for each noise level, the reconstructions

are well within two standard deviations of the true value ε∗s. (See Table 4 for

reconstructions with n = 1 for different data and at the same noise levels.) Most of

the reconstructions, in fact, are near to or are within one standard deviation of ε∗s. We

conclude therefore that for this particular problem, the approximations of the standard

deviation found in Table 7 provide one with a reasonable notion of the variability in the

reconstructions ε̂s,1.

Finally, from the above information we can obtain confidence intervals for our

reconstruction ε̂s,n. For this we use the Wald test ( p. 525 of [9]), which says that under

the regularity conditions of Theorem 3.1 we have that

(ε̂s,n − ε∗s)
√

nÎn → N (0, 1), (62)

where În is a consistent estimator of I(ε∗s). Then

ε̂s,n − uβ/2√
nÎn

< ε∗s < ε̂s,n +
uβ/2√
nÎn

. (63)

are confidence intervals for ε∗s with asymptotic confidence coefficient 1 − β, and uβ/2 is
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Table 7. Estimates for the variability in ε̂s for n = 1. The values of σ, τ , and ε∞
are fixed at the values found in Figure 4. We use αn to estimate I(ε∗s). Then 1/nαn

estimates the variance and 1/
√

nαn estimates the standard deviation in (56).

% noise ε̂s,n αn 1/nαn 1/
√

nαn

0.5 80.37 6.6239 0.1510 0.3885

1.0 80.93 1.6242 0.6157 0.7847

1.5 81.50 0.7085 1.4115 1.1881

2.0 82.07 0.3906 2.5604 1.6001

2.5 82.65 0.2447 4.0867 2.0216

3.0 83.23 0.1664 6.0092 2.4514

5.0 85.63 0.0550 18.1739 4.2631

Table 8. Estimates for the Variability in ε̂s for the Example with 2% Noise. The
values of σ, τ , and ε∞ are fixed at the values found in Figure 4.

n ε̂s,n 1/
√

nαn ε̂s,n − uβ/2√
nαn

ε̂s,n +
uβ/2√
nαn

1 82.07 1.6001 77.95 86.19

2 80.36 1.0982 77.53 83.19

4 79.84 0.7705 77.86 81.82

8 80.38 0.5496 78.96 81.80

16 80.11 0.3868 79.11 81.11

32 80.01 0.2729 79.31 80.71

64 79.73 0.1921 79.23 80.22

the upper β/2 point of the standard normal distribution. It is given in [9], p. 526, that

αn in (60) is a consistent estimator of I(ε∗s), and hence we can use În = αn in (63) to

obtain confidence interval estimates.

For the results summarized in Table 6, we use (63) to obtain approximate confidence

intervals for β = .99. The results are found in Table 8. We see that for n small,

the confidence intervals are large, but as n becomes large, the confidence intervals

become small, and a great deal more certainty can be inferred about the value of the

reconstruction. We note that (63) is an asymptotic result, and hence, is suspect in the

case of small n. Nonetheless, for each n in our example, the true value ε∗s is contained

within the given confidence interval.

For the results summarized in Table 7, we again use (63) to obtain approximate

confidence intervals for β = .9. The results are found in Table 9. The true value ε∗s is

contained in the confidence interval for each noise level. Hence, we conclude that even

for n = 1 the confidence intervals given by the Wald test (63) give a reasonable notion

of the variability in the reconstructions of ε∗s. Note the dramatic increase in the size of

the confidence intervals as the noise level increases.
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Table 9. Estimates for the variability in ε̂s for n = 1. The values of σ, τ , and ε∞
are fixed at the values found in Figure 4. We use αn to estimate I(ε∗s). Then 1/nαn

estimates the variance and 1/
√

nαn estimates the standard deviation in (56).

% noise ε̂s,n 1/
√

nαn ε̂s,n − uβ/2√
nαn

ε̂s,n +
uβ/2√
nαn

0.5 80.37 0.3885 79.73 81.01

1.0 80.93 0.7847 79.64 82.22

1.5 81.50 1.1881 79.55 83.45

2.0 82.07 1.6001 79.44 84.70

2.5 82.65 2.0216 79.32 85.98

3.0 83.23 2.4514 79.20 87.26

5.0 85.63 4.2631 78.62 92.64

5. Conclusions

We have presented a mathematical model for two dimensional, time domain, TM mode

calculations with PML absorbing boundary conditions, in the presence of a Debye

medium. The resulting set of PDEs is solved using the FDTD algorithm. We present

numerical results from forward calculations when the Debye medium parameters are

chosen in order to model the polarization behavior of water.

A statistical model for data generation is presented, and we solve the parameter

identification problem by obtaining the maximum likelihood estimate corresponding to

the data and noise model. For us this involves the minimization of the negative log-

likelihood function, which takes a least squares form. A constrained, ellipsoidal, trust

region modification of the Levenburg-Marquardt algorithm is used to this end.

A frequency domain analysis is presented that provides an explanation of results

obtained from solutions of the inverse problem for data generated with varying levels

of noise. Strategies for solving the inverse problem which decrease computational cost

and are based on these conclusions are presented.

Finally, we use a theorem from the statistical theory of large samples to obtain

estimates of the variability in the estimated parameters. Confidence intervals for these

estimated parameters are also presented.
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